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We study the phase diagram of spin-one polar condensates in a two-dimensional optical lattice with mag-
netic anisotropy. We show that the topological binding of vorticity to nematic disclinations allows for a rich
variety of phase transitions. These include Kosterlitz-Thouless-like transitions with a superfluid stiffness jump
that can be experimentally tuned to take a continuous set of values, and a cascaded Kosterlitz-Thouless
transition, characterized by two divergent length scales. For higher integer spin bosons S, the thermal phase
transition out of the planar polar phase is strongly affected by the parity of S.
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I. INTRODUCTION

Low temperature superfluidity in simple atomic systems
is a well-studied subject. It is well-known that scalar bosons,
confined to two spatial dimensions �2d�, cannot form a true
condensate. Instead, the off-diagonal correlations display ei-
ther power law decay �in the superfluid phase� or exponential
decay �in the normal phase�. These two phases are usually
separated by a finite temperature Kosterlitz-Thouless �KT�
driven by superfluid vortex unbinding. Such a transition in
atomic systems has been observed experimentally through
interference measurements.1

Atomic systems of bosons with degenerate hyperfine lev-
els lead to more exotic phenomena at low temperatures usu-
ally referred to as “spinor condensation.” Such systems have
been at the focus of intense experimental and theoretical ac-
tivity since their discovery.2 The hyperfine levels give rise to
a new quantum number analogous to the spin. The macro-
scopic phase coherence in spinor systems can be accompa-
nied by magnetic order. Indeed the spin and charge degrees
of freedom may be strongly intertwined—as seen, for ex-
ample, in the topological defects, which can simultaneously
involve atomic supercurrents and magnetic textures.3 The
presence of these multiple types of defects leads to a richer
variety of phases and phase transitions.

In this paper, we study thermal transitions in 2d polar
condensates, where uniaxial spin-nematic order �character-
ized by a headless vector, or “director”� coexists with super-
fluidity. First, we point out a crucial difference between polar
condensates with even integer and odd integer spin �as in S
=1 23Na�. For even S, the superfluid vortex and the nematic
disclination are independent, while for odd S, they are bound
to each other topologically. This strongly impacts the phase
diagrams. When the nematic director is confined to rotate in
a plane, the normal state can be reached via a single continu-
ous transition from the polar state for the case of odd S, but
not for even S, where a split transition is expected. We study
the odd S case in detail in this paper, and further show that
the single continuous transition itself can take on two very
different characters, one, which is essentially KT-like, but
with a nonuniversal superfluid stiffness jump; and another

that is of a “cascaded KT” type described in more detail
below. Interference experiments1 which have been used to
study KT transitions in scalar condensates, can also be used
to probe the transitions discussed here.

Consider spin-one bosons in a 2d optical lattice, described
by a Hubbard model with couplings U0 and U2,

H = − t �
�ij�,�

ai�
† aj� + U0�

i

ni�ni − 1� − ��
i

ni

+ U2�
i

�S� i
2 − 2ni� − g�

i

�Si
z�2. �1�

The depth of the optical lattice serves to tune �U0 / t�. Here,
ai�

† creates an atom at site i with spin Si
z=�� �−1,0 ,1�, ni is

the particle number at site i, and � is the chemical potential.
The quadratic Zeeman field g, described below, is absent in
magnetically isotropic systems. We concentrate on atoms
with antiferromagnetic spin interactions, U2�0, e.g., as is
the case in 23Na.

The zero temperature phase diagram of model �1� with
U2�0 and g=0 was studied in Ref. 4. At unit filling �one
atom per lattice site�, the system undergoes a continuous
transition at T=0 between a nematic Mott insulator and a
polar superfluid. The transition is tuned by the depth of the
optical lattice. For deep lattices �U0 / t�1�, the system is a
nematic Mott insulator, characterized by atoms which pre-
dominantly occupy the Sz=0 state, together with a vanishing
compressibility. More generally, the nematic can be any
n̂ ·S=0 state, with the director n̂ serving as an order param-
eter. On the other hand, for weak optical lattices �U0 / t�1�
the system is a polar superfluid. The order parameter ��

��a��= ��+1 ,�0 ,�−1�T in the polar state is �
=ei	R�0,1 ,0�T−R is a generic SO�3� spin rotation. As in
the Mott insulator, the polar state � has nematic order, de-
scribed by a director n̂ for which n̂ ·S� 	��=0, but it also has
superfluid order, captured by an expectation value of the su-
perfluid phase 	.

In the following, we are interested in systems with posi-
tive quadratic Zeeman field g�0. Such a field has the effect
of restricting the director n̂ to lie in the xy plane in both the
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Mott nematic and polar states.2 The most general planar po-
lar state is then

� = ei	�− ei
,0,e−i
�T, �2�

where 
 is the angle of n̂ relative to the x axis. The AC
Zeeman effect—shining linearly polarized light at a fre-
quency slightly detuned from the hyperfine level splitting—
can induce the required negative quadratic Zeeman field5 that
leads to a planar polar state. The opposite g�0 limit �in-
duced by a magnetic field in S=1 23Na� is essentially iden-
tical to a nonmagnetic system since the nematic director is
frozen along the field.

II. TOPOLOGICAL DEFECTS

Topological defects play an essential role in 2d finite tem-
perature continuous phase transitions. In the present context,
the planar polar superfluid �SF� is the “most ordered” phase,
as it has both nematic and superfluid quasi-long-range order
�QLRO�. We can then understand the phase diagram in terms
of proliferation of defects of the planar polar condensate,
which can destroy the order partially �leading to a nematic
insulator� or completely.

It is impossible to distinguish between the states �n̂ �n̂ is
a headless vector�. However, an adiabatic rotation taking n̂ to
-n̂ induces a change in sign in the polar order parameter �.
This sign can be absorbed by simultaneously shifting the
superfluid phase 	 by 
. Therefore, to ensure single-
valuedness of the order parameter, in a polar state, a nematic
disclination must be accompanied by a half-vortex in the
superfluid phase.

More generally, the topological point defects of a planar
polar condensate in 2d are labeled by two half-integer
charges, �qc ,qs�, describing the winding of 	 and 
, respec-
tively, in units of 2
. By single-valuedness of � in Eq. �2�,
the sum qc+qs is constrained to be an integer. The lowest
energy defects are the superfluid vortex ��1,0�, the nematic
vortex �0, �1�, and the disclination+half-vortex �� 1

2 , �
1
2 �.

These defects are shown in Fig. 1.
Topological defects proliferate when the temperature is

large relative to some appropriate stiffness parameter. In the
case at hand, due to the presence of both spin and charge

degrees of freedom, there are two relevant stiffness coeffi-
cients, Ks and Kc. These correspond to the energy cost of an
elastic deformation in the nematic direction 
 and in the
superfluid phase 	, respectively. In a dilute gas and in the
absence of an optical lattice, the kinetic term �2

2m 	���	2

= �2

2m 	�	2���	�2+ ��
�2� predicts Kc=Ks.
6 On the other hand,

enhanced quantum fluctuations in an optical lattice can
change this.7 An optical lattice suppresses both Kc and Ks,
but its main effect is to impede atomic motion, leading to
Kc /Ks�1. For strong lattice potentials at integer filling, i.e.,
in the Mott nematic phase, the charge stiffness is suppressed
to the point where the system is an insulator, while maintain-
ing nematic QLRO.4 The nematic Mott insulator-polar SF
transition is second order. Thus, proximity to this transition
allows tuning the ratio Kc /Ks�1 over a wide range.

The topological defects interact logarithmically at long
distances, leading to a Coulomb gas action,

S = �
ij

�Kcqi
cqj

c + Ksqi
sqj

s�log
rij

a
+ �

i

log yi. �3�

Here, a is the defect core size, and the reduced stiffnesses
Kc=
�c /2T and Ks=
�s /2T have been normalized by a fac-
tor of 2 /
 for later convenience. The defect fugacity yi takes
the values yc and ym, respectively, for the defects ��1,0� and
�� 1

2 , �
1
2 � in Fig. 1.

III. DEFECT UNBINDING

The phase diagram as a function of the reduced stiffnesses
Ks and Kc consists of four phases: �i� polar state. At large Ks
and Kc, all defects remain bound and the polar order param-
eter has algebraic order. �ii� Disordered. In the opposite limit,
when both Ks and Kc are small, all of the topological defects
proliferate, and the system has short-range correlations in
both charge and spin. �iii� Nematic. Starting in the polar state
and keeping Ks large, when Kc is reduced sufficiently, super-
fluid vortices proliferate, with all other defects remaining
bound. This leads to algebraic order in the nematic order
parameter e2i
, but no superfluidity. �iv� Paired superfluid.
Conversely, when Kc is large and Ks is small, the nematic
vortex unbinds, leading to algebraic order in e2i	, but no spin
order. Note that, for polar condensates in an optical lattice,
for which Ks�Kc, the paired superfluid is not present, as
shown in Fig. 2.

The phase boundaries of the polar state can be obtained
from the requirement that all defects in Fig. 1 be bound. This
corresponds to Kc

R�1 �bound superfluid vortices�, Ks
R�1

�bound nematic vortices�, and Kc
R+Ks

R�4 �bound
disclination+half-vortices�. Here, we have introduced the
notation Kc,s

R to denote the long-distance spin and charge
stiffness, which is renormalized by the presence of a finite
density of bound defect pairs. The conditions for vortex un-
binding are shown in Fig. 3.

To obtain the correct phase diagram, however, it is impor-
tant to recognize that the conditions for defect unbinding
cannot always be treated independently of one another. In
particular, there are situations where the unbinding of one
type of defect can precipitate the unbinding of a second type

bb

cc

aa

FIG. 1. �Color online� Topological defects of the planar polar
state. �a� In a superfluid vortex �qc ,qs�= �1,0�, 	c winds by 2

around the vortex �superflow shown as double circle with arrows�.
�b� In a nematic vortex �0,1�, the director n̂ winds by 2
. �c� In a
disclination+half-vortex � 1

2 , 1
2 �, n̂ and 	c wind by 
 simultaneously.
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of defect. As an example, consider the triangular region en-
closed by PQS in Fig. 3. At first glance, it looks like the
superfluid vortices are proliferated �since Kc�1�, whereas
the disclination+half-vortices remain bound �since Kc+Ks
�4�. This would identify this region as belonging to the
nematic phase. However, points within this region cannot
describe a stable nematic phase. The cheapest defects inside
a nematic are the single disclinations—in which the phase 

winds by 
. Disclinations are bound whenever the reduced
spin stiffness Ks is larger than 4. However, Ks�4 in the
region PQS. Therefore, this region is part of the disordered
phase.

The instability of the nematic within region PQS can also
be understood by thinking of the single disclination as the
remnant of the disclination+half-vortex of the polar phase,
once the superfluid phase has been disordered due to the
proliferation of superfluid vortices. In this situation, the pro-
liferation of superfluid vortices renormalizes the charge stiff-
ness to zero �Kc

R=0�. Therefore, although the bare values of
Kc and Ks satisfy the condition for disclination+half-vortex
to be bound, Kc+Ks�4, the renormalized stiffnesses do not,
Kc

R+Ks
R�4. These arguments show that, along the line PQ

�and also along P�Q��, the system undergoes a direct transi-
tion from the polar state to the disordered state. This transi-
tion involves two different types of defects, and therefore is
in a different universality class from the transition along
P�OP. We call the transition along PQ a “cascaded
Kosterlitz-Thouless” transition �cKT�.

It is difficult to give a fully controlled renormalization
group �RG� treatment of the cKT transition, since the physics
involves the proliferation of one type of defect before the
other defect “realizes” that it is unbound. The conventional
RG treatment of defect unbinding is only controlled when
the defect fugacities are small, and it breaks down when the
defects proliferate and the fugacities become large. Note that,
despite the difficulty in giving a carefully controlled RG
treatment, the coarse graining process in the RG cannot in-
crease the value of the stiffnesses. Therefore, the argument
for the instability of nematic order within the region PQS is
robust. In the following section, we will study the RG equa-
tions and derive the critical properties of the cKT transition
PQ, and we will contrast it to the disclination+half-vortex
proliferation along P�OP. This will be followed in Sec. V by
a numerical study of the transitions along PQ and P�OP
using Monte Carlo simulations. This will allow us to study
the finite size scaling properties at the two transitions, and
compare them with the predictions from the RG analysis.

IV. RENORMALIZATION GROUP ANALYSIS

A. Renormalization group equations

In this section, we focus on the case Ks�Kc, correspond-
ing to bosons in an optical lattice. Then, the nematic vortices
�0,1� are always the last defects to proliferate, and they can
be neglected in the analysis below. A real space renormaliza-
tion group analysis of the Coulomb gas �3� is carried out in
Ref. 8. To quadratic order in the fugacities,8

ẏc = 2�1 − Kc�yc + 2
ym
2 �4a�

ẏm = �4 − Ks − Kc�ym/2 + 2
ymyc �4b�

K̇c = − 8
Kc
2�2yc

2 + ym
2 � �4c�

K̇s = − 8
Ks
2ym

2 . �4d�

Here ġ= dg
d� and e� is the length rescaling factor. These RG

equations are valid provided the fugacities remain small. As
is clear from Eq. �3�, the RG equations must be symmetric
under the exchange of spin and charge degrees of freedom.

polar

normal

nematic

P
Q

R

S

O

(
1

2
,

1

2

)
(1,0)

FIG. 2. �Color online� Schematic phase diagram as a function of
optical lattice depth and temperature. The topological defects that
disorder the polar state are: a superfluid vortex �qc ,qs�= �1,0�,
where 	 winds by 2
 �red double circle�; and a disclination
+half-vortex � 1

2 , 1
2 �, where both 	 and 
 wind by 
. Along the

cascaded KT transition PQ, both defects play a role.

O
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410

1

FIG. 3. Phase diagram as a function of the reduced stiffnesses
Kc and Ks. The solid lines represent the conditions for the different
topological defects to be bound, when the interactions between dif-
ferent types of defects are ignored. Two regions �enclosed by PQS
and P�Q�S�� are labeled by question marks. In the absence of vor-
tex interactions, these regions would be in the nematic and paired
superfluid phases �pSF�, respectively. However, as argued in the
text, the ordered phases in these two regions are unstable, and the
two regions are part of the disordered phase, which extends to the
dashed lines QS and Q�S�. For simplicity, the phase diagram is
drawn for infinitesimal bare defect fugacities. Point O is not a spe-
cial point in the phase diagram, but it is indicated for comparison
with Fig. 2
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In order to understand the RG equations �4�, consider first
the flow of the superfluid vortex fugacity yc, Eq. �4a�. The
first term on the right-hand side describes the competition
between energy cost and entropy gain for the creation of a
superfluid vortex; the second term, proportional to ym

2 , arises
because two dislocation+half-vortices can combine into a
superfluid vortex. On the other hand, Eq. �4c� for the flow of
Kc describes the screening of the Coulomb interaction be-
tween defects due to a finite density of bound defect-anti-
defect pairs in the medium. The sign of the flow of Kc is
negative semidefinite, and is only zero when the fugacities yc
and ym are zero, or when Kc itself is zero. Thus, the fixed
point in the RG requires either the fugacities or Kc to flow to
zero. Similar considerations apply to Ks. The fixed points of
the RG are characterized by the values of the renormalized
stiffness K�

R�K���=��, ��=c ,s�.
The continuous transitions between the phases in Fig. 2

arise from defect unbinding, and may be classified according
to the type of defect that triggers the transition. If a single
type of defect is important, one observes a conventional KT
scenario. However, we also find a class of transitions where
unbinding of one set of defects triggers the instability in
another set, leading to a cascaded KT transition with two
diverging length scales. Here, we will concentrate on the two
direct transitions between the polar and disordered states,
along the lines OP and PQ. The multicritical point P be-
longs to a different universality class, as discussed in Ref. 8.
The other transitions QR and QS belong in the conventional
KT scenario.

B. Disclination+half-vortex unbinding (OP)

Here, the polar state is disordered by the proliferation of
disclination+half-vortices. These defects destroy both charge
and spin order. At the transition, the renormalized stiffness
satisfy Ks

R+Kc
R=4 and Kc

R�1. The superfluid stiffness jump
in this transition can be tuned continuously with optical lat-
tice depth, ranging from Kc

R=2 at point O, to Kc
R→1 as we

approach point P. On the other hand, the sum of superfluid
and spin stiffness is universal. The correlation lengths ��

diverge as the transition is approached from the disordered
side as

�� 
 a exp�d��T − TKT�−1/2� . �5�

As in the usual KT transition, dc=ds is nonuniversal.

C. Cascaded KT criticality (PQ)

Along PQ, the superfluid vortices are on the verge of
proliferating, since Kc

R=1. On the other hand, the sum Ks
R

+Kc
R is above the threshold value of 4, indicating that the

disclination+half-vortices are bound at the transition. How-
ever, as soon as the transition is crossed, Kc flows to zero,
reducing Ks

R+Kc
R below 4. Now, the disclination

+half-vortices unbind, leading to a completely disordered
phase. We call this a “cascaded” KT transition, since unbind-
ing of one type of defect triggers the unbinding of the other.

Both spin-nematic and charge orders have diverging cor-
relation lengths as PQ is approached from the disordered

phase. However, there is a separation of scales �s��c, due to
the fact that the superfluid vortices unbind at a shorter length
scale than the disclination+half-vortices. We will show be-
low that the two are related by a power law,

�s 
 a��c/a�B, �6�

where B=1 / �4−Ks
R��1, and �c follows Eq. �5�.

The main challenge in studying the cascaded KT transi-
tion is that the naive RG equations �4� break down once the
superfluid vortices unbind. In order to circumvent this, we
use the separation of scales to perform the RG in two steps.
First, we solve Eq. �4� up to the scale �c where the superfluid
vortex fugacity begins to diverge. At this point, the super-
fluid correlations are explicitly short-ranged, and we can in-
tegrate out the charge degrees of freedom to obtain a local
spin-only model. We then study the RG flow of the ensuing
spin model.

In the first step, the fugacity of the disclination+half
−vortex is renormalized down according to Eq. �4b�, ỹm

ym�a /�c��Ks−3�/2. The RG flow of the coarse grained cou-

plings ỹm, and K̃c at longer scales is then governed by ẏ̃m

= 1
2 �4− K̃s�ỹm and K̇̃s=−8
K̃s

2ỹm
2 . Integrating this RG flow un-

til ỹm is on order unity yields Eq. �6�, with B= �4−Ks
R�−1.

Note that, B is bounded below by one, near point P, and can
be arbitrarily large near Q, where Ks

R=4. The topology of the
phase diagram in Fig. 2 is crucially different from Ref. 8,
where the cKT transition �PQ� is misinterpreted as two sepa-
rate transitions.

The two diverging length scales at the cKT transition arise
due to the fact that the disclination+half-vortex is a danger-
ously irrelevant operator at the transition. This is one of the
few examples we know of a dangerously irrelevant disorder
operator.9,10

V. MONTE CARLO SIMULATIONS

A. Loop model

In order to test the transitions predicted in the previous
sections, we present a relatively simple lattice current-loop
model defined on a periodic cubic lattice. The configurations
�C� that contribute to its partition function contain two types
of bond variables: directed dimers ei,�� �1,0 ,−1� and undi-
rected double dimers di,�� �0,2�, on bonds between site i
and its neighbors i+ �̂ ��=x ,y ,��. At each site i, we enforce
two constraints: �1� ���ei,�+ei−�̂,��=0 �directed dimer con-
servation� and �2� ���	ei,�	+di,�+ 	ei−�̂,�	+di−�̂,��=2 �close
packing constraint�. The partition function is given by

Z = �
C



i

�WD��di,x+di,y+di,��/2�t�	ei,�	+di,�. �7�

Roughly, the parameter t is a temperature-like parameter
�raising t eliminates in-plane loops and double dimers�, while
WD tunes the ratio Kc /Ks �increasing WD increases the
double dimer density�. As an illustration, we show a planar
lattice configuration in Fig. 4. Configurations that contribute
to the partition function are similar configurations but on a
cubic lattice of size L�L�4.
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The loop model �7� is a simple variant of strongly coupled
two color lattice QCD with staggered fermions �SCLQCD2�,
a model with an SO�3��U�1� symmetry and hence of inter-
est also in the field of spinor condensates. In the model we
consider here, the SO�3� symmetry is broken to an SO�2�
subgroup. While SCLQCD2 has been studied in both cubic
�3d� �Ref. 11� and hypercubic �4d� �Ref. 12� lattices, the
above model remains unstudied so far. These models can be
studied efficiently using directed-loop Monte Carlo algo-
rithms as discussed in Refs. 12 and 13.

As a consequence of the constraints, the model considered
here has two conserved currents: �1� Ji,�

s =�i�	ei,�	+di,�
−1 /3� where �i=+1 and −1 on alternating sites, and �2�
Ji,�

c =ei,�. These currents correspond to the spin and charge
conservation and can be used to compute Ks and Kc

K� =



2L2���
i

Ji,x
a �2� . �8�

Here, K� is normalized such that at a usual KT transition one
would expect Ks , Kc=1. Note that, at every spacelike link,
Ji,�

c +Ji,�
s is an even integer.19 This implies that the topologi-

cal defects are half-integers with the constraint that qc+qs is

an integer, which is crucial to the physics here.20 In the Ap-
pendix, we provide a diquark representation of the loop
model, in which the symmetries of the model are seen ex-
plicitly. Due to these symmetries, the model studied here is
expected to exhibit the same universal physics as the Cou-
lomb gas system described by Eq. �3� close to second order
phase transitions. In fact, we will provide below clear nu-
merical evidence for the predicted transitions along the line
OP �disclination+half-vortex unbinding� and PQ �cKT tran-
sition� using this model.

B. Disclination+half-vortex proliferation (P�OP)

Let us first focus on the transition that occurs along the
line P�OP. When one is exactly on this line, the finite size
scaling formula for Ka, can be computed using RG and is
given by

Ka�TKT,L� = Ka
R�1 +

1

2

1

Ca + log L
� , �9�

where Kc
R+Ks

R=4 and the Ca �a=c ,s� are nonuniversal con-
stants. We would like to show evidence for this using our
model. We have learned that, in our model, we can approach
this line by varying t for fixed WD in the interval 0�WD
�3. We have done extensive calculations up to lattice sizes
of L=512 by focusing on WD=0 and 1. In Fig. 5 we show
the finite size scaling of Ks and Kc at WD=0 for various
values of t close to the transition. Table I shows that we
obtain a good fit to Eq. �9� for t�1.05. This is understand-
able since everywhere inside the polar phase Ka is expected
to be a constant for large L and this just means Ca is large.
Since t=1.05 is the last value of t where the fit works well, at
that value, we should be very close to the critical line. It is
important to note that, indeed, Kc+Ks�4 there �see last col-
umn of Table I�. Individually, each of the Ka’s are not uni-
versal. Since Kc

R�Ks
R, we must be somewhere on the P�O

line of the phase diagram. We can change WD and t to go to
a different point on the P�OP line. To show this have per-
formed calculations at WD=1. In Table I, we also give some
of our fits for the WD=1 case. Again, t=1.05 seems to on the
critical line and Kc+Ks�4. But now we have Kc=Ks, which
means we are right at the midpoint O.

FIG. 4. An illustration of a current-loop configuration discussed
in the text. The bonds with arrows are the directed dimers and solid
undirected bonds are the undirected double dimers. The configura-
tion shown is planar, while in the model studied here, the configu-
rations will be similar but on a cubical lattice.
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FIG. 5. �Color online� Finite size scaling near the polar melting transition �P�OP� at WD=0 and t=0.9,1.0, 1.05, 1.1, and 1.2. The solid
line is the fit to Eq. �9�. The values of the fit are given in Table I
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C. Cascaded KT transition (PQ)

Next, we focus on the cascaded KT transition line PQ. On
this line, the cKT scenario predicts that Ks and Kc should
follow different finite size scaling laws:

Kc�tcKT,L� = 1 +
1

2

1

Cc + log L
, �10�

Ks�tcKT,L� = Ks
R + CsL

3−Ks
R
, �11�

where C� are again nonuniversal constants, and 3�Ks
R�4.

In order to test this scenario, the first step is to locate a point
on the cKT line within our model. We have identified nu-
merically that one such point is WD=3.05 and t= tcKT
�0.885. In order to cross the transition line at this point, we
vary both WD and t such that WD=3.05+10�t−0.885�, and
compute Ks and Kc for lattice sizes up to L=512.

Figure 6 shows our data for both Kc and Ks. The first
important qualitative observation we make from the figure is

that both Ks and Kc appear to jump to zero for t� tcKT as
expected. Furthermore, the rough value of the jump is Kc

R

�1 and Ks
R�3.6, which is again as expected. Thus, the point

is roughly midway between P and Q, yet in the numerical
data, both Ks and Kc seem to undergo a transition simulta-
neously. This is consistent with the results of Sec. III, where
we argued that for these parameters, a split transition, i.e.,
crossing QR first and then QS, is ruled out since Ks

R�4 is
inconsistent with a stable nematic phase.

Next, we perform a more quantitative analysis at t= tcKT.
We fit our data for Kc and Ks as a function of L to Eqs. �10�
and �11�. If Kc

R=1 is fixed, we find Cc=−0.168�4�, with
goodness of fit �2 /DOF=1, and Ks

R=3.567�3�, and Cs

=0.58�2� with �2 /DOF=0.7. We emphasize that 8�L
�512 were used in the fit. This large range gives us confi-
dence in our analysis. The insets in the graphs in Fig. 6 show
the finite size scaling of Kc and Ks, respectively, along with
the fit. Thus, we claim that the Monte Carlo simulations are

TABLE I. Fits to Eq. �9� at WD=0 and WD=1. Note that, t=1.05 is almost on the P�OP line, with Ks
R

+Kc
R�4 with goodness of fit �2 /DOF�1–2. When WD=1 and t=1.05, we are at the midpoint O on the

P�OP line.

t Kc
R Cc �2 Ks

R Cs �2 Ks
R+Kc

R

WD=0

0.80 2.96�2� 7�1� 0.3 1.95�2� � 0.7 4.9�4�
0.90 2.74�1� 6.5�9� 0.3 1.89�1� 10�2� 0.9 4.63�2�
1.00 2.468�5� 3.1�2� 1.6 1.763�5� 4.7�5� 1.1 4.231�10�
1.05 2.297�2� 1.09�3� 0.9 1.677�2� 2.05�7� 0.7 3.974�4�
1.10 2.145�2� 0.34�2� 24.7 1.594�2� 0.98�4� 4.4 3.739�4�

WD=1

0.80 2.651�1� � 1.4 2.652�1� � 1.3 5.316�3�
0.90 2.41�2� 15�5� 0.6 2.40�1� 12�3� 1.1 4.81�3�
1.00 2.138�6� 4.2�4� 1.3 2.144�9� 4.6�7� 2.3 4.282�15�
1.05 1.967�2� 1.29�3� 2.6 1.968�2� 1.29�5� 2.3 3.935�4�
1.10 1.821�1� 0.43�2� 59 1.818�2� 0.40�2� 24 3.639�3�
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FIG. 6. �Color online� Cascaded KT �PQ�: Kc �top� and Ks �bottom� vs t / tcKT for various system sizes L. Insets: Kc and Ks vs L at fixed
t= tcKT, fit to Eqs. �10� and �11�, respectively. The fits yield Ks

R=3.567�3�, Cs=0.58�2�, and Cc=−0.168�4�, with goodness of fit �2 /DOF

1.
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consistent with the expected finite size scaling predicted by
the RG analysis.

Another important prediction of the cKT scenario is the
presence of two diverging correlation lengths near the cKT
transition PQ, which follows Eq. �6�. Unfortunately we have
not measured the correlation lengths directly. However we
can see this divergence in an indirect manner. Since a finite
size box limits the diverging correlation lengths, the jumps in
the stiffness Ka are no longer sharp but broadened depending
on the value of L �see Fig. 6�. A temperature ta

�� tKT can then
be defined such that Ka�ta

��=xKa
R�tKT�, where x�1 is some

fixed fraction. In other words, at ta
�, Ka has been reduced to a

fraction x of its value at tKT. The fact that the correlation
length diverges as t approaches tKT is now seen by the fact
that as L becomes large ta

� approaches tKT. This behavior can
be quantified using RG, and we expect

1

�ta
� − tKT

= �a log L + �a, �12�

where all constants are nonuniversal, except for the ratio
�c /�s=1 / �4−Ks

R�. Note that, Eq. �12� is valid provided that
ta
�− tKT is small, i.e., for large enough system size L.

Figure 7 shows our data for ta
� for the choices x=0.1 and

x=0.5. The first striking qualitative observation we make is
that 1 /�ta

�− tKT scales linearly with log�L� to a very good
approximation as expected. Furthermore, the slopes of the
two lines are clearly different. Note that, we expect �s
�c

p

where p=�c /�s�1. Indeed, we do find that p�1. Quantita-
tively, while tc

� fits well to Eq. �12�, ts
� does not fit for larger

values of L due to a small but clear curvature in the data.
Table II contains the fit results. Ignoring the large values of

�2 /DOF, we see that �c /�s
3.5 at x=0.1 and 
3.2 at x
=0.5. These must be compared to the theoretical prediction
from the RG treatment, 1 / �4−Ks

R�=2.31�1�. If we take the
curvature in ts

� into account by using a fit of the form
1

�ts
�−tKT

=�s log L+�s+�s / �log L�, the �2 /DOF improves

slightly, but is still not good. The ratio �c /�s changes to
about 3 and 2.3 at x=0.1 and 0.5. If, instead, we just use the
last two points and draw a straight line through the data, this
ratio is 2.8 and 1.85, respectively. This large variation in the
values of the ratio �c /�s shows that we do not yet have
quantitative control on it. The theoretical expectation seems
to be within the large systematic errors. Since our data are
obtained on rather small lattice sizes where the two large
length scales �s
�c

2.3 cannot fit well, our inability to quanti-
tatively control the ratio is not surprising.

VI. CONCLUSION

In conclusion, we have shown that the topological binding
of spin and charge vorticity in S=1 polar condensates can
give fundamentally different types of phase transitions. In
particular, we have shown the existence of the disclination
+half vortex unbinding transition, which is similar to the KT
transition, but where the superfluid stiffness jump is nonuni-
versal and a cascaded KT transition where in addition to a
nonuniversal jump in the stiffness two correlation lengths
diverge at the critical point, where one is a power of the
other. A large scale numerical study supports the detailed
picture we have developed.

Our analysis can be applied to other ordered states. For
example, spin-2 87Rb in a magnetic field forms a “square
nematic” state15,16 with �
ei	�e2i
s ,0 ,0 ,0 ,e−2i
s�. This
yields precisely the same physics as the spin-1 planar polar
state. There are examples outside of cold atomic systems that
display the same topological structure studied here. For in-
stance, Berg et al. have argued that the thermal melting of a
striped superconducting state is produced by a fully analo-
gous set of topological defects to those discussed here.17

Therefore, the phase diagram of a striped superconductor is
the same as that of a planar polar condensate, although the
particular phases involved in the two cases are different. Fol-
lowing this work, a recent numerical study has looked at the
3d version of this system.18

ACKNOWLEDGMENTS

We thank E. Berg, G. Delfino, J.E. Moore, S. Mukerjee,
L. Radzihovsky, and D. Stamper-Kurn for useful discussions.
This work was supported in part by the NSF under Grant No.
DMR-0506953 and the Hellman Faculty Fund.

��
��

��
��

��
��

�
�

��
��

��
�� ��

�� ��
�� �

��
��

�
� ��

�� �� �
� �

�

2 3 4 5 6
Log(L)

0

2

4

6

8

t
*

tc
*
(x=0.5)

tc
*
(x=0.1)��

��

ts
*
(x=0.5)��

��

ts
*
(x=0.1)��

FIG. 7. �Color online� �t�− tKT�−1/2 vs system size for charge
correlations and spin correlations at x=0.1 and x=0.5. The solid
lines are fits given in Table II

TABLE II. Fits to Eq. �12� at x=0.1 and x=0.5. The fits for ts
� are not very good because of a detectable

curvature in the data.

x �s �s �2 /DOF �c �c �2 /DOF

0.1 0.321�2� 0.577�8� 8.3 1.125�5� 0.20�2� 1.4

0.5 0.363�3� 0.74�1� 35 1.15�1� 1.25�4� 0.3
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APPENDIX: DIQUARK REPRESENTATION OF THE
LOOP MODEL

In the Appendix, we recast the loop model Eq. �7� in
terms of a path integral over Grassmann variables in order to
clarify the symmetries of the model. The partition function is
given by

ZG =� D�↑D�↓D�̄↓D�̄↑e
−SG, �A1�

where the action

SG = − �
i,�
�u�

2
���̄i+��i�2 + ��̄i�i+�̂�2� + �WD − 1�

��u�

2
�2

��̄i+��i�2��̄i�i+�̂�2� .

Here,

�i � ��i,↑

�i,↓
�, and �̄i � ��̄i↑ �̄i↓ � , �A2�

such that �i� and �̄i� ��= ↑ ,↓� are independent Grassmann
variables residing on the sites of a L�L�4 lattice. In par-

ticular, �i� and �̄i� are not complex conjugates of each other.
The constants u� are ux=uy =1 and u�= t, so that �̂ can be
thought of as a Euclidean time direction and t as a
temperature-like parameter. Performing the path integral

over �i� and �̄i� yields the loop model �7� exactly, as can be
checked easily by explicit computation.

Equation �A1� can also be expressed as a model of “di-

quarks” Di��i↓�i↑ and D̄i� �̄i↑�̄i↓ hopping and interacting
on a lattice,

SG = �
i,�

u��D̄iDi+� + D̄i+�Di� − �WD − 1��
i,�

u�
2D̄iDiD̄i+�Di+�.

�A3�

The model has an SU�2��SU�2� gauge symmetry. To see
this, note that the diquark Di=�i↓�i↑= 1

2�����i��i�� is invari-
ant under a local transformation

�i → Ui�i, �A4�

where Ui�SU�2�. Similarly, an independent SU�2� transfor-

mation Ūi can be carried out on the barred variables, �̄i

→�̄iŪi
†, leaving D̄i invariant.

After taking the gauge invariance into account, we are
still left with an independent global U�1��U�1� symmetry
of the model �A1�, parametrized by the angles 	 and 
,

�i → ei��i
−	�/2�i

�̄i → ei��i
+	�/2�̄i, �A5�

where �i=+1 and −1 on alternating sites. Note that, unlike
the gauge invariance in Eq. �A4�, the transformation �A5�
does not leave the diquark invariant, since �i↓�i↑
→ei��i
−	��i↓�i↑. However, a simultaneous shift of 	 and 

by the angle 
 does leave the diquark invariant. Hence, the
model �A1� is explicitly seen to have topological defects that
are labeled by half-integers with the constraint that qc+qs is
an integer. Therefore, the low energy defects of the model
are the superfluid vortex �1,0�, the nematic vortex �0,1�, and
the nematic+half-vortex � 1

2 , 1
2 �. By equivalence of the di-

quark model to Eq. �7�, we conclude that the loop model also
has the same topological defects.
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